Journal of Organometallic Chemistry, 260 (1984) C6–C12 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Preliminary communication

SCHWEFEL(IV)-VERBINDUNGEN ALS LIGANDEN

IV*. O-SILYLIERUNG VON SO₂-KOMPLEXEN

WOLFDIETER A. SCHENK* und FRANZ-ERICH BAUMANN

Institut für Anorganische Chemie der Universität, Am Hubland, 8700 Würzburg (B.R.D.) (Eingegangen den 12. August 1983)

Summary

The sulfur dioxide complexes *mer*, *trans*-M(CO)₃(L)₂(η^1 -SO₂) (L = PPh₂Me, P(OMe)₃; M = Mo, W), *fac*-M(CO)₃(dppe)(η^2 -SO₂) (M = Mo, W), *mer*-M(CO)₃-(dmpe)(η^1 -SO₂) (M = Cr, Mo, W), *mer*-M(CO)₃(dppe)(η^1 -SO₂) (M = Mo, W), and *trans*-M(CO)₂(dppe)(P-i-Pr₃)(η^1 -SO₂) (M = Mo, W) react with Me₃SiOSO₂CF₃ to give the corresponding O-silylated derivatives. The new compounds were characterized by IR, ²⁹Si and ³¹P NMR spectroscopy.

Übergangsmetall-SO₂-Komplexe werden seit jüngster Zeit intensiv untersucht, vor allem im Hinblick auf Struktur und spektroskopische Eigenschaften [1,2]. Reaktionen am koordinierten SO₂ fanden dagegen bisher kaum Beachtung. Als einziges wohldokumentiertes Beispiel ist die Bildung des η^2/η^1 -verbrückten Komplexes Mo₂(CO)₄(py)₂(PPh₃)₂(μ -SO₂)₂ anzusehen, der durch Dissoziation eines Phosphinliganden von Mo(CO)₂(py)(PPh₃)₂(SO₂) und Anlagerung eines zweiten Komplexmoleküls an die freie Koordinationsstelle entsteht [3]. Diese Reaktion zeigt, dass zumindest elektronenreichere SO₂-Komplexe am Sauerstoff elektrophil angegriffen werden können.

Vor kurzem haben wir über eine Reihe von Carbonyl-SO₂-Komplexen der Metalle Chrom, Molybdän und Wolfram berichtet [4-6], deren Elektronendichte am Metall je nach Anzahl der Donorliganden einen weiten Bereich umspannt. Diese Reihe haben wir nun durch die ersten Dicarbonylwolfram-SO₂-Komplexe vervollständigt. Ihre Synthese lehnt sich eng an die der entsprechenden Molybdänderivate [6] an (Gl. 1), mit denen sie nach ihren ³¹P-NMR- und IR-Spektren isostrukturell sind.

^{*}III. Mitteilung siehe Ref. 6. Über einen Teil der hier beschriebenen Ergebnisse wurde bereits berichtet: International Conference on the Chemistry of Chromium, Molybdenum and Tungsten. Brighton, Sussex 1983, Proceedings P 5.

 $\begin{array}{c} cis-W(CO)_{2}(\eta^{3}-C_{3}H_{5})(Br)(MeCN)_{2} \xrightarrow{dppe} cis-W(CO)_{2}(\eta^{3}-C_{3}H_{5})(Br)(dppe) \\ \hline PR_{3} & mer, cis-W(CO)_{2}(dppe)(PR_{3})(MeCN) & PR_{3} & | \\ \hline MeCN & (I-III) & PR_{3} & | \\ \hline (I-III) & PMe_{3} & I, IV \\ P-i-Pr_{3} & II, V & (1) \\ \hline SO_{2} & mer, trans-W(CO)_{2}(dppe)(PR_{3})(\eta^{1}-SO_{2}) & (IV-VI) \end{array}$

Die für η^1 -planar koordiniertes SO₂ sehr niedrigen SO-Valenzschwingungen (Tab. 1) bezeugen den Elektronenreichtum auch dieser Verbindungen.

Alle Versuche, SO₂-Komplexe des Typs $M(CO)_n(L)_{5-n}(SO_2)$ (M = Cr, Mo, W; L = Donorligand; n = 2-5) zu protonieren oder zu alkylieren schlugen fehl [7]. Erst der Einsatz der besonders oxophilen Trimethylsilylgruppe brachte den erhofften Erfolg. Mit Trimethylsilyl-trifluormethansulfonat (VII) reagieren fast alle von uns dargestellten Tri- und Dicarbonyl-SO₂-Komplexe zu den entsprechenden kationischen Trimethylsilyl-Derivaten (Gl. 2-5). Der Reaktionsverlauf lässt sich infrarot-spektrokopisch bequem verfolgen Die CO-Valenzschwingungsabsorptionen der silylierten Komplexe (Tab. 2) finden sich um 30-40 cm⁻¹ bei höheren Wellenzahlen als die der Ausgangsverbindungen, ein Indiz für den Elektronenabzug durch die Trimethylsilylgruppe.

$$\begin{array}{ccc} & & \text{mer-M(CO)}_{3}(L-L)(SO_{2}) & \xrightarrow{VII} & \text{mer-}[M(CO)_{3}(L-L)(SO_{2}SiMe_{3})]SO_{3}CF_{3} & (3) \\ & & (IX-XIII) & (IXa-XIIIa) \\ & & L-L = & \\ & \underline{M} & \underline{dmpe} & dppe \\ \hline Cr & IX & \\ & Mo & X & XI & \\ & & XII & XIII \\ \end{array}$$

$$fac-M(CO)_{3}(dppe)(\eta^{2}-SO_{2}) & \xrightarrow{VII} & \text{mer-}[M(CO)_{3}(dppe)(SO_{2}SiMe_{3})]SO_{3}CF_{3} & (4) \\ & & (XIV, XV) & (XIa, XIIIa) \\ \hline & & \underline{M} & \\ & & & XV & (Forsetzung s. S. C10) \\ \end{array}$$

Verb.	$\nu(CO)^{a}$ (cm ⁻¹)	ν(CN) bzw. ^a ν(SO) (cm ⁻¹)	δ(PA) ^b (ppm) (¹ J(W-P _A) (H ₂	δ(P _B) ^c (ppm) (¹ J(W-P _B) (Hz))	δ(P _C) ^d (ppm (¹ J(W-P _C) (1	() $J(P_{A}-P_{B})$ (Hz) (Hz)	J(P _A -P _C) (Hz)	J(P _B -P _C) (Hz)
H	1817s	2251w	57.6 ^e	46.5	-27.1	14	100	20
	1746s		(302)	(220)	(302)			
п	1832s	2241w	57.0 ^e	39.9	41.3	18	100	19
	1754s							
III	1840s	2248w	57.1 ^e	45.6	13.9	15	101	18
	1767s		(298)	(222)	(310)			
١٧	1971vw	1178m	41.9^{f}	39.3	-37.5	m	55	25
	1870vs	1050s	(261)	(249)	(264)			
v	1968vw	1190m	36.6 ^{f,g}	32.8	34.4	4	62	22
	1856vs	1048s	(238)	(242)	(260)			
Ŋ	1962vw	1190m	40.8^{f}	38.5	-4.7	0	61	24
	1859vs	1054s	(256)	(247)	(274)			
^a In Nuj	ol. ^b dppe, ì	etrans zum einzähi	nigen Phosphin. ⁶	^c dppe, P <i>cis</i> zum einzähni	gen Phosphin.	^d Einzähniges Phos	phin. ^e In Me(N/C¢D¢.

-	
× .	
r-i	
Η.	
8	
5	
0	
M.	
'n	
0	
<u> </u>	
- co	
2	
<	
ρ <u>ε</u>	
Ē	
- 5	
-	
0	
5	
2	
- K.	
z	
2	
ý	
60	
1	
-	
<	
r.	
<u> </u>	
-	
-	
-	
<u>e</u>	
· · .	
- 5	
P	
54	
Ĩ.	
5	
÷.	
- A	
<	
PE	
EL.	
5	
Ξ.	
0	
5	
5	
<u> </u>	
- E	
- PH	
Z	
1	
0	
60	
~	
щ	
◄	
2	
Ξ	
Ē	
H	
51	
-	
z	
51	
<u> </u>	
H	
AT	
DAT	
DAT	
LDAT	
IR-DAT	
MR-DAT	
IMR-DAT	
NMR-DAT	
-NMR-DAT	
P-NMR-DAT	
³¹ P-NMR-DAT	
³¹ P-NMR-DAT	
D ³¹ P-NMR-DAT	
VD ³¹ P-NMR-DAT	
IND ³¹ P-NMR-DAT	
UND ³¹ P-NMR-DAT	
UND ³¹ P-NMR-DAT	
R- UND ³¹ P-NMR-DAT	
R- UND ³¹ P-NMR-DAT	

TABELLE 1

^f In CDCl₃. ^g 162-MHz-Spektrum, Bruker WM 100.

IR- UND	³¹ P-NMR-DA	TEN DER SILYLIE	RTEN SO ₁ -KOMPLEX	E	j		
Verb.	$\nu(CO)^{a}$ (cm ⁻¹) -	δ(P _A) (ppm) ^b (¹ J(W-P) (Hz))	δ(P _B)(ppm) δ (¹ J(W-P)(Hz)) ((P _C) (ppm) ¹ J(WP) (Hz))	J(P _A —P _B) (Hz)	J(P _A -P _C) (Hz)	$J(P_{\rm B}-P_{\rm C})$ (Hz)
Va	1907vs		- - -) 			
VIIIa	1921vs	54.0 ^c	45.2 ^d 5	3.4 ^e	18	43	24
IXa	2043w	71.3	60.4		46		
	1982m						
	1941s						
Ха	2056w	45.1	34.8		27		
	1995m						
	1947s						
XIa	2059w	56.0	49.3		25		
	2000m						
	1958s						
XIIa	2049w	28.1	9.8		13		
	1980m	(240)	(181)				
	1931s						
XIIIa	2054w	35.4	34.7		13		
	1993m	(194)	(245)				
	1943s						
XVIa	2054w						
	1985m						
	1956s						
XVIIa	2048w	-2.8	-10.7		12		
	1970m	(234)	(193)				
	1939s	•					
XVIIIa	2060w	123.1^{f}	118.7		24		
	1995m	(387)	(362)				
	1958s						
^d In CH,C	1, ^b In CDC	l _a . ^c dppe, P trans z	um einzähnigen Phosph	in. ^d dppe, P cis zu	m einzähnige	n Phosphin.	Einzähniges Phosphin.

TABELLE 2

f Bei -40°C; Koaleszenz bei ca. 0°C, bei +30°C ein schartes Signal bei 120.0 ppm, ¹J(W-P) 375 Hz; $\Delta G^{\pm} \simeq 52 \text{ kJ mol}^{-1}$.

C9

$$mer, trans-M(CO)_{3}(L)_{2}(SO)_{2} \xrightarrow{VII} mer, cis-[M(CO)_{3}(L)_{2}(SO_{2}SiMe_{3})]SO_{3}CF_{3} (5)$$

$$(XVI-XVIII) (XVIa-XVIIIa)$$

$$\frac{M}{M} \xrightarrow{PPh_{2}Me} P(OMe)_{3}$$

Mo XVI W XVII XVIII

Obwohl die silylierten SO₂-Komplexe unter Luftausschluss überraschend stabil sind, gelang es uns bisher nicht, eines der nach Entfernen von Lösungsmittel und überschüssigem Silylester als tiefrote Öle zurückbleibenden Salze Va–XVIIIa zu kristallisieren. Versuche, SO₃CF₃⁻ gegen höher symmetrische Anionen wie PF₆ oder AsF_6^- auszutauschen, führten zur Zersetzung der Komplexe. Lediglich XIIIa konnte mit NaBPh₄ in das entsprechende Tetraphenylborat überführt werden, das sich jedoch sogar in fester Form schon bei -20°C zersetzt. Der Konstitutionsbeweis der neuen Verbindungen stützt sich daher vor allem auf spektroskopische Daten (Tab 2). Aus dem Bandenmuster im Carbonylbereich lässt sich eindeutig entnehmen, dass in den Tricarbonylen die CO-Gruppen meridional und in den Dicarbonylen *trans* zueinander stehen. Zusammen mit den ³¹P-NMR-Spektren ist damit die Anordnung der Liganden um das Zentralatom in allen Fällen eindeutig festgelegt. Bemerkenswert ist die cis-Stellung der Phosphinliganden in XVIIa und XVIIIa, die sich aus den kleinen Kopplungskonstanten ²J(P-P) ableiten lässt. Bei *trans*-Anordnung zweier Phosphine bzw. Phosphite am Wolfram sind Kopplungskonstanten um 50 bzw. 150 Hz zu erwarten [8].

Als empfindlichste Sonde für die unmittelbare Umgebung des Siliziums dient zweifellos die ²⁹Si-NMR-Spektroskopie. XIa und XIIIa zeigen jeweils ein leicht verbreitertes Singulett bei 41.4 bzw. 42.3 ppm, also in einem für eine stark positivierte OSiMe₃-Gruppe typischen Bereich [9]. Dies spricht dafür, dass der elektrophile Angriff am Sauerstoff des SO₂-Liganden und nicht am Metall erfolgte; im letzteren Fall müsste das ²⁹Si-Signal auch durch Kopplung mit den beiden ³¹P-Kernen deutlich aufgespalten sein [9] und bei XIIIa zusätzlich ¹⁸³W-Satelliten zeigen.

Keine eindeutige Entscheidung ist uns bisher möglich zwischen den beiden Koordinationsweisen des SO₂SiMe₃-Liganden, da im entscheidenden Spektralbereich von 800–1200 cm⁻¹ das Infrarotspektrum durch die intensiven Absorp-

tionen des $SO_3CF_3^{-}$ - bzw. BPh₄⁻-Ions beherrscht wird. Sowohl für die η^2 -Form A als auch fur die η^1 -Form B gibt es als Präzedenzfälle die SO_2 -verbrückten Verbindungen $Mo_2(CO)_4(py)_2(PPh_3)_2(\mu$ -SO₂)₂ [3] bzw. Rh₂(PPh₃)₄(μ -Cl)(μ -SO₂)₂ [10]. Die für oktaedrische Komplexe höchst ungewöhnliche Stereomobilität von XVIIIa scheint aber eher für den Koordinationstyp A zu sprechen. Danach sind die silylierten SO₂-Komplexe im Einklang mit ihren hohen CO-Valenzschwingungsfrequenzen [11] als siebenfach koordinierte Metall(II)-Derivate aufzufassen. Folgende Beobachtungen erlauben Rückschlüsse auf den Verlauf der Silylierungsreaktion: In der Tricarbonylreihe werden die facialen Komplexe XIV und XV etwa zehnmal rascher silyliert als die meridionalen Vertreter IX-XIII. In einem Konkurrenzexperiment wurde ein etwa äquimolares Gemisch der Wolframkomplexe X und XV bei 0°C silyliert. Dabei reagierte der faciale Komplex XV binnen weniger Minuten ab, während der meridionale Komplex X auch nach einer Stunde noch in der Lösung IR-spektroskopisch nachzuweisen war. Wir nehmen deshalb an, dass die Silylierung der meridionalen η^1 -SO₂-Komplexe über die entsprechenden facialen η^2 -Derivate verläuft. die nach ihren niedrigen SO-

SCHEMA 1

Valenzschwingungsfrequenzen zu urteilen am Sauerstoff wesentlich elektronenreicher sind (Schema 1). Die Einstellung des *fac-mer*-Gleichgewichtes wird durch die im Silylester stets vorhandene freie Säure katalysiert [4]. Für einen Verlauf nach Schema 1 spricht vor allem der Befund, dass bei der Entsilylierung (z. B. mit Methanol) im Einklang mit dem Prinzip der mikroskopischen Reversibilität stets die *facialen* SO₂-Komplexe zurückerhalten werden.

Experimenteller Teil

Alle Reaktionen wurden in sorgfältig gereinigten Lösungsmitteln unter Inertgas durchgeführt. NMR-Spektren: Bruker WH 90, IR-Spektren: Perkin-Elmer 283.

 η^3 -Allyl-bromo-dicarbonyl-bis(diphenylphosphino)ethan-wolfram wird wie die analoge Molybdän-Verbindung [12] als orangefarbenes Pulver erhalten. Ausbeute: 95%, Schmp. ca. 200°C (Zers.). IR: ν (CO) (CH₂Cl₂) 1935s, 1841s cm⁻¹.

Acetonitril-dicarbonyl-bis(diphenylphosphino)ethan-phosphin-wolfram-Komplexe. Allgemeine Arbeitsvorschrift: 5.0 mmol Allyl-Komplex und 10.0 mmol Phosphin werden in 50 ml Benzol/Acetonitril (1/1) unter Rückfluss erhitzt, bis sich das Edukt gelöst hat (PMe₃, P-i-Pr₃ ca. 2 h, PPh₂Me ca. 40 h). Man filtriert, engt i. Vak. auf 20 ml ein und fällt mit Ethanol.

I: Ausbeute: 75%, gelbes Pulver. Zers.-P. 140°C. (Gef.: C, 52.6; H, 5.00; N, 1.61. C₃₃H₃₆NO₂P₃W ber.: C, 52.5; H, 4.80; N, 1.85%).

II: Ausbeute: 82%, gelbes Pulver, Zers.-P. 160°C. (Gef.: C, 56.0; H, 5.73; N, 1.83. C₃₉H₄₈NO₂P₃W ber.: C, 55.8; H, 5.76; N, 1.67%).

III: Ausbeute: 80%, gelbes Pulver, Zers.-P. 145°C. (Gef.: C, 57.5; H, 4.49; N, 1.54. C₄₃H₄₀NO₂P₃W ber.: C, 58.7; H, 4.58; N, 1.59%).

Dicarbonyl-bis(diphenylphosphino)ethan-phosphin-schwefeldioxid-wolfram-Komplexe. Allgemeine Arbeitsvorschrift: 4.0 mmol Acetonitril-Komplex werden bei 0°C in 25 ml SO₂-gesättigtem THF gelöst. Man leitet noch 2 h lang SO₂ ein, dabei kristallisieren IV und V bereits aus. Mit 50 ml Ether wird das Produkt vollständig gefällt.

IV: Ausbeute, 77%, orangefarbenes Pulver, Schmp. 188°C (Zers.). (Gef.: C, 46.8; H, 4.15; S, 4.07. C₃₁H₃₃O₄P₃SW ber.: C, 47.8; H, 4.27; S, 4.12%).
V: Ausbeute: 60%, orangefarbenes Pulver, Schmp. 118-122°C (Zers.). (Gef.:

C, 51.8; H, 5.32; S, 3.76. $C_{37}H_{45}O_4P_3SW$ ber.: C, 51.5; H, 5.26; S, 3.72%).

VI: Ausbeute: 60%, orangefarbenes Pulver, Schmp. $150-155^{\circ}C$ (Zers.). (Gef.: C, 54.1; H, 4.10; S, 3.98. $C_{41}H_{37}O_4P_3SW$ ber.: C, 54.6; H, 4.13; S, 3.55%).

Silylierung der Schwefeldioxid-Komplexe. Allgemeine Arbeitsvorschrift: 1.0 mmol SO_2 -Komplex wird bei 0°C in 5 ml Dichlormethan gelöst und mit 3.0 mmol $Me_3SiOSO_2CF_3$ versetzt. Die Lösung färbt sich sofort tiefrot, nach Beendigung der Reaktion (IR-Kontrolle) werden Lösungsmittel und überschüssiger Silylester i. Vak. bei 0°C entfernt. Das zurückbleibende tiefrote Öl ist für spektroskopische Untersuchungen hinreichend rein.

Dank

Dem Fonds der Chemischen Industrie danken wir für ein Doktoranden-Stipendium und die Unterstützung mit Sachmitteln.

Literatur

- 1 D.M.P. Mingos, Transition Met. Chem., 3 (1978) 1.
- 2 R.R. Ryan, G.J. Kubas, D.C. Moody und P.G. Eller, Structure and Bonding, Bd. 46, S. 47, Springer-Verlag, Berlin 1981.
- 3 G.D. Jarvinen, G.J. Kubas und R.R. Ryan, J. Chem. Soc., Chem. Commun., (1981) 305.
- 4 W.A. Schenk und F.-E. Baumann, Chem. Ber., 115 (1982) 2615.
- 5 Ch. Burschka, F.-E. Baumann und W.A. Schenk, Z. Anorg. Allg. Chem., 502 (1983) 191.
- 6 W.A. Schenk und F.-E. Baumann, J. Organomet. Chem., 256 (1983) 261.
- 7 Über ähnliche negative Ergebnisse wurde unabhängig auch von anderer Seite berichtet: G.J. Kubas, G.D. Jarvinen und R.R. Ryan, J. Amer. Chem. Soc., 105 (1983) 1883.
- 8 W.A. Schenk und W. Buchner, Inorg. Chim. Acta, 70 (1983) 189.
- 9 H. Marsmann in P. Diehl, E. Fluck und R. Kosfeld (Herausg.), NMR, Grundlagen und Fortschritte, Springer-Verlag, Berlin 1981.
- 10 C.E. Briant, G.R. Hughes, P.C. Minshall und D.M.P. Mingos, J. Organomet. Chem., 224 (1982) C21.
- 11 Zum Vergleich: $Mo(CO)_3(dppe)I_2$ hat die v(CO) 2035, 1984, 1924 cm⁻¹. J. Lewis und R. Whyman, J. Chem. Soc., (1965) 5486.
- 12 H. tom Dieck und H. Friedel, J. Organomet. Chem., 14 (1968) 375.